Equivalence relations - definizione. Che cos'è Equivalence relations
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Equivalence relations - definizione

REFLEXIVE, SYMMETRIC AND TRANSITIVE RELATION
EquivalenceRelation; Graphing equivalence; Equivalency; Identification (mathematics); Equivalence relations; ≍; Geometric equivalence; ≎; ≭; ≑; Fine (mathematics); Fundamental theorem of equivalence relations
  • logical matrices]] (colored fields, including those in light gray, stand for ones; white fields for zeros). The row and column indices of nonwhite cells are the related elements, while the different colors, other than light gray, indicate the equivalence classes (each light gray cell is its own equivalence class).

equivalence relation         
<mathematics> A relation R on a set including elements a, b, c, which is reflexive (a R a), symmetric (a R b => b R a) and transitive (a R b R c => a R c). An equivalence relation defines an equivalence class. See also partial equivalence relation. (1996-05-13)
equivalence relation         
¦ noun Mathematics & Logic a relation between elements of a set which is reflexive, symmetric, and transitive and which defines exclusive classes whose members bear the relation to each other and not to those in other classes.
Equivalency         
·noun ·same·as Equivalence.

Wikipedia

Equivalence relation

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.

Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class.